Package: mycaas (via r-universe)

November 12, 2024

Type Package

Title My Computerized Adaptive Assessment

Version 0.0.1

Maintainer Andrea Brancaccio <andreabrancaccio01@gmail.com>

Description Implementation of adaptive assessment procedures based on Knowledge Space Theory (KST) and Formal Psychological Assessment (FPA) frameworks. An adaptive assessment is a type of evaluation that adjusts the difficulty and nature of subsequent questions based on the test-taker's responses to previous ones. The package contains functions to perform and simulate an adaptive assessment. Moreover, it is integrated with two 'Shiny' interfaces, making it both accessible and user-friendly. The package has been funded by the European Union - NextGenerationEU and by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.5, project "RAISE -Robotics and AI for Socio-economic Empowerment" (ECS00000035).

License MIT + file LICENSE

Depends R (>= 2.10)

Imports ggplot2, graphics, grDevices, igraph, methods, rlang, rPref, shiny, stats

Suggests pks, spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Language en-US

Config/pak/sysreqs libglpk-dev make libxml2-dev zlib1g-dev

Repository https://brancaccioandrea.r-universe.dev

RemoteUrl https://github.com/brancaccioandrea/mycaas

RemoteRef HEAD

RemoteSha dc303588224cbff1b982ff10ea824fd1a57ff2a7

Contents

A	_knowledge_test	2
a	ssment	3
h	_split	5
р	ormance_simulation	7
р	assessment	8
р	t_question	9
r	_Assessment	9
r	Practice	10
S	ping_criterion	10
S	mary.assessment	12
u	ating	12
		14

AA_knowledge_test Example of a test to showcase the Adaptive Assessment tools

Description

Index

The dataset contains a six items test concerning basic knowledge on computerized adaptive assessment. This test has been developed during the creation of this R package.

Usage

AA_knowledge_test

Format

A assessment object based on six multiple choice items.

states Structure with six items and twelve states.

likelihood Uniformly distributed across the states.

Stopping_rule The stopping rules is "likelihood_maximization" with a criterion of .5.

Question Six multiple choice items.

adaptive The value is set on TRUE allowing adaptive administration.

repetition The value is set on FALSE not allowing items repetition.

Source

Created to serve as an Example for this package.

Examples

data(AA_knowledge_test) #Lazy loading

assessment

Description

Function that performs computerized assessment

Usage

```
assessment(
  likelihood = NA,
  states,
 beta,
 eta,
 questioning_rule = "half_split",
  termination = "likelihood_maximization",
  SC = 0.5,
 N_items = NULL,
 ki = 1,
  textq = NULL,
  textr = NULL,
  repetition = FALSE,
 adaptive = TRUE,
 simulation = TRUE,
  interactiveplot = FALSE
)
```

Arguments

likelihood	A vector of the likelihood distribution on the states in the structure.	
states	A state-by-problem matrix representing the structure, where an element is one if the item is included in the state, and zero otherwise.	
beta	Vector of careless error probabilities.	
eta	Vector of lucky guess error probabilities.	
<pre>questioning_rule</pre>		
	A function which is used a questioning rules for the assessment. the default questioning rule is 'half_split'.	
termination	Define and select one of the termination criteria: "likelihood_maximization" the assessment terminates when the likelihood of a knowledge state in a knowledge structure became higher of the termination criteria (Heller, and Repitsch, 2012). "items_discrimination" the assessment terminates if the marginal likelihood of all the items is outside the interval of the stopping criteria (Donadello, Spoto, Sambo, Badaloni, Granziol, Vidotto, 2017).	
SC	The Stopping criterion for the assessment is a numeric vector of values between 0 and 1. When the "termination" parameter is "likelihood_maximization" this is	

	a single scalar that corresponds to the likelihood that a knowledge state needed to terminates the assessment. When the "termination" parameter is "items_discrimination" this is a numeric vector of length two, the assessment terminate if the the marginal likelihood of each item is outside of the interval between the two elements.
N_items	Number of items in the test. Optional entry in case of adaptive = FALSE.
ki	A number indicating the row in the structure to simulate as the true knowledge states.
textq	A character vector containing the text of the questions.
textr	A list containing for each question the correct and incorrect answers.
repetition	Logical value. When the value is TRUE the assessment procedure is allowed to administer the same item more then one time.
adaptive	Logical value. When the value is TRUE the assessment proceed with an adaptive procedure, otherwise the items presentation is randomized
simulation	Logical value. When the value is TRUE the assessment proceed with simulat- ing a complete assessment with a user knowledge state define in variable ki. Otherwise the assessment collect answer from the user.
interactiveplot	
	Logical value. When the value is TRUE the knowledge structure is plot using a color thermometer scale to represents the likelihood of the states.

Value

The outcome of a single assessment.

References

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Springer.

Donadello, I., Spoto, A., Sambo, F., Badaloni, S., Granziol, U., & Vidotto, G. (2017). ATS-PD: An adaptive testing system for psychological disorders. Educational and psychological measurement, 77(5), 792-815.

Heller, J., & Repitsch, C. (2012). Exploiting prior information in stochastic knowledge assessment. Methodology.

- # Example 1: From Brancaccio,de Chiusole, Stefanutti (2023)
- # Consider the knowledge space and the parameters used in Brancaccio,
- # de Chiusole, Stefanutti (2023) in Example 1

```
states<-matrix(c( 0,0,0,0,0,</pre>
```

```
0,1,1,1,1,
                   1,1,0,1,1,
                   1,1,1,1,1), byrow=TRUE, ncol=5)
beta <-c(.004,.03,.02,.01,.007)
eta <-c(5e-06, 5e-05, 4e-05,.007,.08)
likelihood <-rep(1,nrow(states))/nrow(states)</pre>
assessment(likelihood,states,beta,eta)
# Example 2: Random items presentation
assessment(N_items = 5 ,adaptive = FALSE)
# Example 3: Interactive mode on in the console
TextQuestion<-c("I frequently use computers.",</pre>
"I know how to build an assessment instrument (i.e., a paper-and-pencil questionnaire).",
"I can code and implement a 'for' loop (independently of its purpose).",
"When you administer an adaptive assessment, each question: ",
"I usually programme or code my assessment tools ",
"I add my assessment in a programme (i.e , google form) ")
TextResponse<-list(
correct=list("Yes","Yes","Yes","depend from the previous questions","Yes","Yes"),
incorrect=list(c("No"),c("No"),c("is independent from the others questions",
"depend from the gender of the interviewed"),c("No"),c("No"))
)
map <- matrix(c(1,0,0,0,</pre>
             0,1,0,0,
             1,0,1,0,
             0,1,0,1,
             1,1,1,0,
             1,1,0,0), ncol=4)
skillmap<-cbind(1:6,map)</pre>
states<-pks::delineate(skillmap)$K</pre>
rownames(states)<-NULL
eta <- rep(0.1,ncol(states))</pre>
beta <- rep(0.1,ncol(states))</pre>
likelihood <-rep(1,nrow(states))/nrow(states)</pre>
## Not run: token <- assessment(likelihood,states,beta,eta,textq=TextQuestion,</pre>
                     textr=TextResponse,simulation=FALSE)
## End(Not run)
```

half_split

Questioning rule (half split)

Description

Rule to select the most informative item at each step of the assessment.

Usage

```
half_split(likelihood, states, beta, eta, Q_pool = NA)
```

Arguments

likelihood	A vector of the likelihood distribution on the states in the structure.
states	A state-by-problem matrix representing the structure, where an element is one if the item is included in the state, and zero otherwise.
beta	Vector of careless error probabilities.
eta	Vector of lucky guess error probabilities.
Q_pool	A vector contains the pool of items for the assessment in this moment of the procedure.

Value

The item that maximizes the information (for details see, Doignon and Falmagne, 2012).

References

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Berlin: Springer.

```
# Consider the knowledge space and the parameters used in Brancaccio,
# de Chiusole, Stefanutti (2023) in Example 1
states<-matrix(c( 0,0,0,0,0,</pre>
                   0,0,0,0,1,
                   0,0,1,0,1,
                   0,0,0,1,1,
                   0,0,1,1,1,
                   1,0,1,0,1,
                   0,1,0,1,1,
                   1,0,1,1,1,
                   0,1,1,1,1,
                   1,1,0,1,1,
                   1,1,1,1,1), byrow=TRUE, ncol=5)
beta <-c(.004,.03,.02,.01,.007)
eta <-c(5e-06, 5e-05, 4e-05,.007,.08)
likelihood <-c(0,0,0,0,0,1/3,0,1/3,0,0,1/3)
Q_{pool} <- c(2,4,5)
half_split(likelihood,states,beta,eta,Q_pool)
```

performance_simulation

Performance indexes

Description

Simulation producing efficiency and accuracy performance curves and indexes based on simulated assessment of all the states in structure

Usage

```
performance_simulation(
  states,
  beta,
  eta,
  likelihood = NA,
  questioning_rule = "half_split",
  nrep = 1
)
```

Arguments

states	A state-by-problem matrix representing the structure, where an element is one if the item is included in the state, and zero otherwise.	
beta	Vector of careless error probabilities.	
eta	Vector of lucky guess error probabilities.	
likelihood	A vector of the likelihood for each state, if omitted the initial likelihood is as- sumed equally distributed.	
<pre>questioning_rule</pre>		
	A function which is used a questioning rules for the assessment. the default questioning rule is 'half_split'.	
nrep	Number of times in which each state is simulated. The default value is one.	

Value

Efficiency and Accuracy curves plots.

```
# Consider the knowledge space and the parameters used in Brancaccio,
# de Chiusole, Stefanutti (2023) in Example 1
states<-matrix(c( 0,0,0,0,0,</pre>
```

```
0,0,0,0,1,
0,0,1,0,1,
0,0,0,1,1,
```

```
0,0,1,1,1,

1,0,1,0,1,

0,1,0,1,1,

1,0,1,1,1,

0,1,1,1,1,

1,1,0,1,1,

1,1,1,1,1,), byrow=TRUE, ncol=5)

beta <-c(.004,.03,.02,.01,.007)

eta <-c(5e-06, 5e-05, 4e-05,.007,.08)

performance_simulation(states,beta,eta)
```

plot.assessment Plot (Method)

Description

Function used to plot an assessment object.

Usage

```
## S3 method for class 'assessment'
plot(x, bg_color = NULL, verices_color = "black", ...)
```

Arguments

х	Assessment object to display.
bg_color	Background color. The default is white.
verices_color	Color of the nodes label.
	Additional arguments affecting the summary produced.

Value

The function returns the graph representation of the structure.

```
# Example: Random items presentation
```

```
token<- assessment(N_items = 5 ,adaptive = FALSE)
plot(token)</pre>
```

Description

Function to print in the console the item and collect the answer.

Usage

```
print_question(
   TextQuestion,
   TextResponse = list(correct = "correct", incorrect = c("wrong1", "wrong2", "wrong3"))
)
```

Arguments

TextQuestion	A character contain the text of the question.
TextResponse	A list containing for each question the correct and incorrect answers.

Value

The answers of the question as numeric (1) if is correct and (0) if is false.

run_Assessment	run Assessment shinyApp	
----------------	-------------------------	--

Description

This function run a shinyApp in which the is available: iii) The GUI implementation of the adaptive assessment

Usage

run_Assessment(file = NULL)

Arguments

file Logical value.

Value

The results of the assessment

Examples

```
# Try the test example yourself
data(AA_knowledge_test)
if(interactive()){
run_Assessment(AA_knowledge_test)}
```

run_Practice

run Practice Assessment shinyApp

Description

This function run a shinyApp in which the following pages are available: i) a brief introduction of the assessment tools; ii) the GUI to create "assessment" files from a "csv" of items; iii) the GUI implementation of the adaptive assessment; and iv) the GUI implementation of the outcome.

Usage

run_Practice()

Value

The results of the assessment

Examples

```
# Try to build your test
if(interactive()){
run_Practice()}
```

stopping_criterion Stopping rule

Description

Rule to decide when terminate the assessment

Usage

```
stopping_criterion(
    likelihood,
    states,
    termination = "likelihood_maximization",
    SC = c(0.8)
)
```

10

Arguments

likelihood	A vector of the likelihood distribution on the states in the structure.
states	A state-by-problem matrix representing the structure, where an element is one if the item is included in the state, and zero otherwise.
termination	Define and select one of the termination criteria: "likelihood_maximization" the assessment terminates when the likelihood of a knowledge state in a knowledge structure became higher of the termination criteria (Heller, and Repitsch, 2012). "items_discrimination" the assessment terminates if the marginal likelihood of all the items is outside the interval of the stopping criteria (Donadello, Spoto, Sambo, Badaloni, Granziol, Vidotto, 2017).
SC	The Stopping criterion for the assessment is a numeric vector of values between 0 and 1. When the "termination" parameter is "likelihood_maximization" this is a single scalar that corresponds to the likelihood that a knowledge state needed to terminates the assessment. When the "termination" parameter is "items_discrimination" this is a numeric vector of length two, the assessment terminate if the the marginal likelihood of each item is outside of the interval between the two elements.

Value

Return TRUE if the assessment should terminates under the criteria, otherwise FALSE

References

Donadello, I., Spoto, A., Sambo, F., Badaloni, S., Granziol, U., & Vidotto, G. (2017). ATS-PD: An adaptive testing system for psychological disorders. Educational and psychological measurement, 77(5), 792-815.

Heller, J., & Repitsch, C. (2012). Exploiting prior information in stochastic knowledge assessment. Methodology.

```
# Consider the knowledge space and the parameters used in Brancaccio,
# de Chiusole, Stefanutti (2023) in Example 1
states<-matrix(c( 0,0,0,0,0,</pre>
                   0,0,0,0,1,
                   0,0,1,0,1,
                   0,0,0,1,1,
                   0,0,1,1,1,
                   1,0,1,0,1,
                   0,1,0,1,1,
                   1,0,1,1,1,
                   0,1,1,1,1,
                   1,1,0,1,1,
                   1,1,1,1,1), byrow=TRUE, ncol=5)
beta <-c(.004,.03,.02,.01,.007)
eta <-c(5e-06, 5e-05, 4e-05,.007,.08)
likelihood <-c(0,0,0,0,0,0,0,.49,0,0,.51)
#stopping criterion based on the likelihood mode
```

```
stopping_criterion(likelihood,states, termination="likelihood_maximization",SC=c(0.5))
#stopping_criterion based on the items marginal probabilities
stopping_criterion(likelihood,states, termination="items_discrimination",SC=c(0.2,0.8))
```

summary.assessment Summary (Method)

Description

Function used to produce result summaries of an assessment object.

Usage

```
## S3 method for class 'assessment'
summary(object, ...)
```

Arguments

object	Assessment object to display
	Additional arguments affecting the summary produced.

Value

The function return a summary of the information in the a assessment object

Examples

```
# Example of random items presentation
```

```
token<- assessment(N_items = 5 ,adaptive = FALSE, ki=15)
summary(token)</pre>
```

updating

Updating rules

Description

Multiplicative rule as in Falmagne and Doignon 2010 (Chapter 13, Section 10)

Usage

```
updating(likelihood, states, q, r_q, beta, eta)
```

```
12
```

updating

Arguments

likelihood	A vector of the likelihood distribution on the states in the structure.
states	A state-by-problem matrix representing the structure, where an element is one if the item is included in the state, and zero otherwise.
q	Last administered item
r_q	Observed response to item q
beta	Vector of careless error probabilities
eta	Vector of lucky guess error probabilities

Value

The updated likelihood distribution on the knowledge states

Examples

Let consider the knowledge space and the parameters used in Brancaccio, # de Chiusole, Stefanutti (2023) in Example 1

```
states<-matrix(c( 0,0,0,0,0,</pre>
                   0,0,0,0,1,
                    0,0,1,0,1,
                    0,0,0,1,1,
                    0,0,1,1,1,
                    1,0,1,0,1,
                    0,1,0,1,1,
                    1,0,1,1,1,
                    0,1,1,1,1,
                    1,1,0,1,1,
                    1,1,1,1,1), byrow=TRUE, ncol=5)
beta <-c(.004,.03,.02,.01,.007)
eta <-c(5e-06, 5e-05, 4e-05,.007,.08)
likelihood_0 <-rep(1,nrow(states))/nrow(states)</pre>
# Item asked
q = 3
# response observed
r_q = 1
likelihood_1 <- updating(likelihood_0,states,q,r_q,beta,eta)</pre>
```

Index

AA_knowledge_test, 2
assessment, 3

half_split, 5

performance_simulation, 7
plot.assessment, 8
print_question, 9

run_Assessment,9
run_Practice,10

stopping_criterion, 10
summary.assessment, 12

updating, 12